信息资源管理学报 ›› 2025, Vol. 15 ›› Issue (4): 87-98.doi: 10.13365/j.jirm.2025.04.087

• 研究论文 • 上一篇    下一篇

面向人工智能的数据治理框架研究——基于政策文本的构建与展望

周文泓1,2 熊小芳1 叶雅寒1   

  1. 1.中国人民大学信息资源管理学院,北京,100872; 
    2.中国人民大学国家治理工程学院,北京,100872
  • 出版日期:2025-07-26 发布日期:2025-08-31
  • 作者简介:周文泓,博士,副教授,研究方向为政府数据治理、政府开放数据、社交媒体文件与档案管理、网络空间的档案化管理;熊小芳(通讯作者),硕士研究生,研究方向为政府数据治理、政府开放数据,xxf159159@126.com;叶雅寒,硕士研究生,研究方向为政府数据治理、网络空间的档案化管理。
  • 基金资助:
    本文系国家社会科学基金重大项目“新一代人工智能背景下的计算档案学研究”(24&ZD326)研究成果之一。

Research on the Data Governance Framework for Artificial Intelligence: Construction and Prospects Based on Policy Texts

Zhou Wenhong1,2 Xiong Xiaofang1 Ye Yahan1   

  1. 1.School of Information Resource Management,Renmin University of China, Beijing, 100872; 
    2.Academy of National Governance,Renmin University of China, Beijing,100872
  • Online:2025-07-26 Published:2025-08-31
  • About author:Zhou Wenhong, Ph.D., associate professor, research interests include government data governance, open government data, records and archives management of social media content, and archival management in cyberspace; Xiong Xiaofang(corresponding author) , master candidate, research interests include government data governance, open government data, xxf159159@126.com; Ye Yahan, master candidate, research interests include government data governance and archival management in cyberspace.)
  • Supported by:
    This study is supported by the Major Project of the National Social Science Fund of China “Computational Archival Science in the Context of Next-Generation Artificial Intelligence”(24&ZD326).

摘要: 探索面向人工智能的数据治理框架,明确当前全球人工智能战略中数据治理行动的布局及进展,进而从数据治理角度发现推进人工智能开发应用体系的策略。本文对各个国家(地区)发布的人工智能政策进行统计,提取其中与数据治理相关的政策条款,采用内容分析法构建面向人工智能的数据治理框架,并基于现有框架提出优化方向。研究发现,当前政策中面向人工智能的数据治理框架涵盖数据主体、数据对象、数据全生命周期管理、数据保障配置四大层面,具有一定参考价值。同时,面向人工智能的数据治理框架优化构建方向包括强化数据管理机构的参与、凸显专业化资源的建设、补足重点环节、优化阶段性的焦点配置。

关键词: 人工智能, 人工智能治理, 数据治理, 数智转型, 数据政策, 政策文本

Abstract: To explore a data governance framework for artificial intelligence (AI), this paper aims to clarify the layout and progress of data governance actions within current global AI strategies, thereby promoting the optimization of AI policy systems in the context of digital intelligence transformation. This paper conducts a statistical analysis of AI policies released by government departments in various countries and regions, extracting policy provisions related to data governance. Using content analysis, this paper outlines a data governance framework for AI and proposes directions for optimization based on the existing framework. It is found that the current policy framework for AI-oriented data governance includes four key points: data subjects, data objects, data lifecycle management, and data security. While showing reference points, it also reflects the optimization construction direction of the data governance framework for artificial intelligence from strengthening the participation of data management institutions, highlighting the orientation of professional resource construction, supplementing key links, and optimizing phased focus configuration.

Key words: Artificial intelligence, AI governance, Data governance, Digital intelligence transformation, Data policy, Policy texts

中图分类号: