信息资源管理学报 ›› 2025, Vol. 15 ›› Issue (1): 113-125.doi: 10.13365/j.jirm.2025.01.113

• 研究论文 • 上一篇    下一篇

面向用户动态偏好的科技论文推荐:一种基于注意嵌入的知识图谱方法

柳亚1 毛谦昂2 颜嘉麒2 陈曦1   

  1. 1.南京大学商学院,南京,210003; 
    2.南京大学信息管理学院,南京,210023
  • 出版日期:2025-01-26 发布日期:2025-02-19
  • 作者简介:柳亚,博士生,研究方向为推荐系统;毛谦昂,博士生,研究方向为区块链数据分析;颜嘉麒,博士,教授,博士生导师,研究方向为区块链、信息系统、数据分析、情报学等;陈曦(通讯作者),博士,教授,博士生导师,研究方向为企业互联网应用与商务智能、数字经济与管理、信息系统安全等,Email: doctor_chan@163.com.
  • 基金资助:
    本研究系国家社科基金项目(21BGL223)、国家自然科学基金项目(72171115、72071104)的研究成果之一。

Scientific Paper Recommendations with User Dynamic Preferences: A Knowledge Graph Approach Based on Attention Embeddings

Liu Ya1 Mao Qian’ang2 Yan Jiaqi2 Chen Xi1   

  1. 1.Business School, Nanjing University, Nanjing, 210003; 
    2.College of Information Management, Nanjing University, Nanjing, 210023
  • Online:2025-01-26 Published:2025-02-19
  • About author:Liu Ya, Ph.D candidate, research interests include recommender systems; Mao Qian'ang, Ph.D candidate, research interests include blockchain data analysis; Yan Jiaqi, Ph.D., professor, Ph.D supervisor, research interests include blockchain, information systems, data analysis, and informatics; Chen Xi(corresponding author), Ph.D., professor, Ph.D supervisor, research interests include enterprise internet application and business intelligence, digital economy and management, and information system security, Email: doctor_chan@163.com.
  • Supported by:
    This article is supported by National Social Science Foundation Project(21BGL223) and National Natural Science Foundation Project(72171115,72071104).

摘要: 科技论文推荐系统是解决论文数据库中信息过载的有效途径。本研究提出了一种基于注意嵌入的知识图谱方法用于科技论文推荐任务,以提升论文推荐的效果。首先构建一个协同知识图谱以整合研究人员行为与论文属性信息,并通过TransR方法优化节点向量表达;其次引入注意序列模块,通过注意传播机制学习节点特征,并利用序列注意机制从阅读序列中捕捉研究人员的时序偏好;最后,模型通过计算研究人员与候选论文之间的匹配分数,生成个性化推荐列表。在NJUBlockchain平台提供的数据集上进行的实验验证了模型的有效性。实验结果表明,所提模型在推荐召回率上有显著提高,能够更精准地捕捉研究者的动态兴趣。这一研究不仅提高了科技论文推荐系统的效果,也为理解和预测研究人员兴趣演变提供了新的视角和工具。

关键词: 科技论文推荐, 动态偏好, 知识图谱, 注意嵌入, 自注意力机制

Abstract: Scientific paper recommendation systems serve as an effective solution to the problem of information overload in academic databases. This study proposes a knowledge-graph-based method employing attention embeddings for the task of scientific paper recommendation to enhance the effectiveness of recommendations. This method initially constructs a collaborative knowledge graph to integrate user behavior with paper attribute information and optimizes node vector representations using the TransR approach. Subsequently, it introduces an attention sequence module that employs an attention propagation mechanism to learn node features and utilizes a sequence attention mechanism to capture the temporal preferences of users from their reading sequences. Finally, the model calculates match scores between researchers and candidate papers to generate personalized recommendation lists. Experiments conducted on a dataset provided by the "Blockchain Laboratory" have validated the effectiveness of the model. Experimental results indicate that the proposed model significantly improves recommendation recall rates, capturing the dynamic interests of researchers more accurately. This study not only enhances the performance of scientific paper recommendation systems but also provides new perspectives and tools for understanding and predicting the evolution of researcher interests.

Key words: Scientific papers recommendation, Dynamic preferences, Knowledge graph, Attention embedding, Self-attention mechanisms

中图分类号: