信息资源管理学报 ›› 2025, Vol. 15 ›› Issue (6): 37-51.doi: 10.13365/j.jirm.2025.06.037

• 专题·面向产业技术创新的智能情报 • 上一篇    下一篇

创新情景视角下突破性论文早期识别方法研究——以生物医学领域为例

张舒倩1 黄山1 毛进1,2 李纲1,2   

  1. 1.武汉大学信息管理学院,武汉,430072; 
    2.武汉大学信息资源研究中心,武汉,430072
  • 出版日期:2025-11-26 发布日期:2026-01-06
  • 作者简介:张舒倩,硕士研究生,研究方向为科技情报;黄山,博士研究生,研究方向为科学计量、科技创新;毛进,博士,副教授,博士生导师,研究方向为科技情报、大数据分析;李纲(通讯作者),博士,教授,博士生导师,研究方向为信息资源管理,Email: imiswhu@aliyun.com。
  • 基金资助:
    本文系国家社会科学基金重大项目“基于数智融合的信息分析方法创新及应用研究”(22&ZD326)的研究成果之一。

Early Identification of Breakthrough Papers from the Perspective of Innovation Scenario: An Application in the Biomedical Field

Zhang Shuqian1 Huang Shan1 Mao Jin1,2 Li Gang1, 2   

  1. 1.School of Information Management, Wuhan University, Wuhan, 430072; 
    2.Center for Studies of Information Resources, Wuhan University, Wuhan, 430072
  • Online:2025-11-26 Published:2026-01-06
  • About author:Zhang Shuqian, master candidate, research interests including scientific and technological information; Huang Shan, Ph.D. candidate, research interests including science metrics and technological innovation; Mao Jin, Ph.D., associate professor, Ph.D. supervisor, research interests including scientific and technological information and big data analysis; Li Gang(corresponding author), Ph.D., professor, Ph.D. supervisor, research interests including information resource management,Email: imiswhu@aliyun.com.
  • Supported by:
    This is an outcome of the Major Project "Research on the Innovation and Application of Information Analysis Methods Based on the Integration of Number and Intelligence"(22&ZD326)supported by National Social Science Foundation of China.

摘要: 时准确地识别突破性科学文献,对于高效配置科研资源、抢占科技发展先机、增强国家核心竞争力具有至关重要的战略意义。针对现有识别方法存在指标维度单一、识别效率不足等局限,从知识创新的情景视角出发,基于知识基础、研究团队及学术界关注等三个方面构建突破性论文区别于普通论文的特征体系,提出一种基于机器学习的突破性论文早期识别方法,并通过生物医学领域的实验表明,模型F1值达到0.838,验证了该方法的有效性,且早期影响力、参考文献数量与普赖斯指数对模型识别结果影响最大。本研究从创新情景的新颖视角丰富和拓展了突破性论文识别的理论框架与方法体系。

关键词: 突破性论文, 机器学习模型, 早期识别, 生物医学领域, 知识创新

Abstract: The timely and accurate identification of breakthrough scientific literature is of crucial strategic significance for the efficient allocation of scientific research resources, seizing the initiative in technological development, and enhancing national core competitiveness. However, existing identification methods have limitations such as single-dimensional indicators and insufficient recognition efficiency. From the contextual perspective of knowledge innovation, this study constructs a characteristic system that distinguishes breakthrough papers from ordinary papers from three aspects: knowledge foundation, research team, and academic attention, and proposes a machine learning-based early identification method for breakthrough papers. Experiments in the field of biomedicine show that the F1-score of the model in this study reaches 0.838, which verifies the effectiveness of the method. Among the factors, early-stage impact, number of references, and Price Index have the most significant impact on the model's recognition results. This study enriches and expands the theoretical framework and methodological system for breakthrough paper identification from the novel perspective of innovation context.

Key words: Breakthrough papers;Machine learning models;Early recognition;Biomedical field, Knowledge innovation

中图分类号: