信息资源管理学报 ›› 2025, Vol. 15 ›› Issue (6): 20-36.doi: 10.13365/j.jirm.2025.06.020

• 专题·面向产业技术创新的智能情报 • 上一篇    下一篇

科学向技术转移的动因与阻力:一项基于指数随机图的实证研究

马铭1 毛进2,3 邹当逸2 李纲3   

  1. 1.南京大学数据管理创新研究中心,苏州,215163; 
    2.武汉大学信息管理学院,武汉,430072; 
    3.武汉大学信息资源研究中心,武汉,430072
  • 出版日期:2025-11-26 发布日期:2026-01-06
  • 作者简介:马铭,博士研究生,研究方向为科技预测、科学评价;毛进(通讯作者),博士,副教授,博士生导师,研究方向为信息组织、大数据分析,Email:danveno@163.com;邹当逸,硕士研究生,研究方向为数据挖掘;李纲,博士,教授,博士生导师,研究方向为信息资源管理、竞争情报。
  • 基金资助:
    本文系国家自然科学基金面上项目“基于‘问题-方法’关联识别的科学知识创新探测与协同演化分析”(72174154)的成果之一。

Drivers and Barriers in Science-to-Technology Transfer: An Empirical Study Based on Exponential Random Graph Model

Ma Ming1 Mao Jin2,3 Zou Dangyi2 Li Gang3   

  1. 1.Research Institute for Data Management & Innovation, Nanjing University, Suzhou, 215163; 
    2.School of Information Management, Wuhan University, Wuhan,430072; 
    3.Center for Studies of Information Resources, Wuhan University, Wuhan,430072
  • Online:2025-11-26 Published:2026-01-06
  • About author:Ma Ming, Ph.D. candidate, research interests including technology forecasting and scientific evaluation; Mao Jin(corresponding author), associate professor, Ph.D., doctoral supervisor, research interests including information organization and big data analysis, Email:danveno@163.com; Zou Dangyi, master candidate, research interests including data mining; Li Gang, professor, Ph.D., doctoral supervisor, research interests including information resource management and competitive intelligence.
  • Supported by:
    This study is supported by the National Natural Science Foundation of China titled "Detecting Scientific Knowledge Innovation and Its Co-evolutionary Analysis Based on 'Question-Method' Association Identification"(72174154).

摘要: 研究科学向技术的知识流动机制有助于理解科学进步对技术创新的推动作用。为此本研究首先构建了一个由关键词引用关系组成的“科学-技术”知识转移网络;然后,利用指数随机图模型,以建模的方式将知识属性与知识转移过程相结合,建模过程同时考虑网络内生结构;最后,基于基因编辑领域1990—2018年的专利及其科学引文数据进行实证分析。研究结果表明,科学和技术知识的高经济价值因理性行为人倾向于基于现有高价值知识进行利用式创新而抑制知识转移,而经济价值的趋同性因适度认知距离有助于降低转移壁垒而促进转移过程;知识的学术价值有助于推动知识转移进程,但在统计上不显著;在同质性效应影响下,知识新颖性和地理邻近对由科学到技术的知识转移关系形成具有促进作用;与随机网络的对比结果证明,技术知识对科学知识的引用行为可能不受知识的语义邻近和知识位势影响。研究结果在不同时段的仿真模型中具有一致性。

关键词: 知识转移网络, 指数随机图模型, 科技关联, 关键词引用, 内生网络结构

Abstract: Investigating the mechanism of knowledge flow from science to technology helps understand how scientific progress drives technological innovation. Thus, this paper first constructed a "science-technology" knowledge transfer network composed of keyword citation. Then, using exponential random graph models, we integrated knowledge attributes with the knowledge transfer process in a modeling approach that simultaneously considered endogenous network structures. Finally, we conducted an empirical analysis based on scientific papers and patent data in the gene editing field from 1990 to 2018. We find that the high economic value of scientific and technological knowledge inhibits knowledge transfer, as rational actors tend to engage in exploitative innovation based on existing high-value knowledge. However, the convergence of economic value facilitates the transfer process by helping to reduce transfer barriers through moderate cognitive distance. The academic value of knowledge contributes to advancing the knowledge transfer process, but this effect is not statistically significant. Under the influence of homogeneity effects, knowledge novelty and geographic proximity have a positive impact on the formation of knowledge transfer relationships from science to technology. Meanwhile, comparison with random networks demonstrates that the citation behavior of technological knowledge toward scientific knowledge may not be influenced by semantic proximity or knowledge potential. These results demonstrate consistency across knowledge network simulation models in different time periods.

Key words: Knowledge transfer network, Exponential random graph model, Technology connection, Keyword citations, Endogenous network structure

中图分类号: