信息资源管理学报 ›› 2025, Vol. 15 ›› Issue (6): 143-156.doi: 10.13365/j.jirm.2025.06.143

• 研究论文 • 上一篇    下一篇

科研团队知识背景组合如何影响知识创新:跨学科比较分析

李欣哲1 鲁晓2,3   

  1. 1.南京理工大学公共事务学院,南京,210094;
    2.中国科学院科技战略咨询研究院,北京,100190;
    3.中国科学院大学公共政策与管理学院,北京,100149
  • 出版日期:2025-11-26 发布日期:2026-01-06
  • 作者简介:李欣哲,副教授,研究方向为科技规划与评价、科技创新政策;鲁晓(通讯作者),研究员,博士生导师,研究方向为科技政策与管理、新兴科技治理,Email:luxiao@casisd.cn。
  • 基金资助:
    本文系国家自然科学基金委政策局软课题“新形势下自然科学基金的新定位及应用基础研究的资助体系探究”(L2424113),国家社会科学基金重大项目“世界科技强国制度环境的比较研究”(23&ZD149)资助的研究成果。

How Research Team Knowledge Background Composition Affects Knowledge Innovation: A Comparative Interdisciplinary Analysis

Li Xinzhe1 Lu Xiao2,3   

  1. 1.School of Public Affairs, Nanjing University of Science and Technology, Nanjing, 210094;
    2.Institutes of Science and Development, Chinese Academy of Sciences, Beijing, 100190;
    3.School of Public Policy and Management, University of Chinese Academy of Sciences, Beijing,100149
  • Online:2025-11-26 Published:2026-01-06
  • About author:Li Xinzhe, Ph.D, associate professor, research interests including science and technology planning and evaluation, science and technology innovation policy; Lu Xiao(corresponding author), Ph.D., professor, doctoral supervisor, research interests including science and technology policy and management, emerging technology governance, Email:luxiao@casisd.cn
  • Supported by:
    This paper was supported by the Policy Bureau Soft Science Project of the National Natural Science Foundation of China "Research on the New Positioning of the Natural Science Foundation and the Funding System for Applied Basic Research under the New Situation" (L2424113), and the Major Project of the National Social Science Foundation of China "Comparative Study of the Institutional Environment of World Science and Technology Powers" (23&ZD149).

摘要: 通过分析来自Crossref数据集1945—2023年间的3263万篇合著论文,考察团队知识背景组合如何影响八大主要科学领域的知识创新。利用蒙特卡洛模拟和自然语言处理,开发度量指标来表征团队知识背景组合,包括团队成员间的内部知识相似性和团队之间的外部知识相似性。研究发现:①不同的知识背景组合在产生知识创新的能力上存在显著差异,特定团队知识背景组合的知识创新能力明显优于其他组合,表明团队知识背景组合对知识创新具有决定性影响;②每个领域都有其最优的团队知识背景组合,其中物理学偏向多样性团队与差异化研究方向,社会科学则在专业化团队构成中表现更佳,这种异质性表明创新政策需因学科制宜;③最优团队知识背景组合在各领域始终仅占少数,表明当前科研体系存在结构性失调,同时,尽管出版物数量呈指数增长,但高水平创新产出在各领域保持恒定,这一“承载能力”现象揭示了科研规模扩张与知识创新之间的脱节。这些发现对科学实践和政策制定具有重要启示。

关键词: 团队知识背景组合, 知识创新, 研究合作, 跨学科比较, 大科学, 科研团队学

Abstract: This study examines how research team knowledge background composition affects the knowledge innovation across eight major scientific fields by analyzing 32.63 million co-authored papers from the Crossref dataset spanning 1945-2023. Using Monte Carlo simulation and natural language processing, this study developed metrics to characterize team knowledge background composition, including internal knowledge similarity among team members and external knowledge similarity among teams. It was found that (1) Different knowledge background compositions exhibit significant differences in their capacity to generate knowledge innovation, with specific team knowledge background compositions demonstrating markedly superior innovation capabilities compared to others, indicating that team knowledge background composition has a decisive impact on knowledge innovation; (2) Each field has its own optimal team knowledge background composition: physics favors diverse teams with differentiated research directions, while social sciences perform better with specialized team compositions, suggesting that innovation policies should be tailored to specific disciplines; (3) Optimal team knowledge background compositions consistently represent only a minority across all fields, indicating structural misalignment in current research systems; meanwhile, despite exponential growth in publication volume, high-level knowledge innovation output remains constant across fields, revealing a "carrying capacity" phenomenon that highlights the disconnect between research scale expansion and knowledge innovation. These findings have important implications for scientific practice and policy development.

Key words: Team knowledge background composition, Knowledge innovation, Research collaboration, Interdisciplinary comparison, Big science, Science of Team Science

中图分类号: