信息资源管理学报 ›› 2025, Vol. 15 ›› Issue (5): 34-50.doi: 10.13365/j.jirm.2025.05.034

• 研究论文 • 上一篇    下一篇

“智”“数”融合的典型行动:生成式智能搜索引擎交互场景下的数据意义建构

彭思源1 伍思颖1 凌商1 李樵2 王平1,3   

  1. 1.武汉大学信息管理学院,武汉,430072; 
    2.南开大学商学院信息资源管理系,天津,300071; 
    3.武汉大学政务智能与数据治理研究中心,武汉,430072
  • 出版日期:2025-09-26 发布日期:2025-10-31
  • 作者简介:彭思源,博士研究生,研究方向为数据用户认知与行为;伍思颖,博士研究生,研究方向为数据用户认知与行为;凌商,硕士研究生,研究方向为数据用户认知与行为;李樵,博士,讲师,研究方向为数据用户心理、数据行为;王平(通讯作者),博士,教授,研究方向为人智交互、数据治理,Email:wangping@whu.edu.cn。
  • 基金资助:
    本文系国家社会科学基金青年项目“开放科学背景下科研用户开放数据发现与重用行为研究”(22CTQ040)的研究成果。

A Typical Action Integrating Intelligence and Data: Data Sensemaking in User-Generated Intelligent Search Engine Interactions

Peng Siyuan1 Wu Siying1 Ling Shang1 Li Qiao2 Wang Ping1,3   

  1. 1.School of Information Management, Wuhan University, Wuhan, 430072; 
    2.Department of Information Resources Management, Nankai Business School, Nankai University, Tianjin, 300071; 
    3.Center for Studies of Government Intelligence and Data Governance, Wuhan University, Wuhan, 430072
  • Online:2025-09-26 Published:2025-10-31
  • About author:Peng Siyuan, Ph.D. candidate, research interests include data user cognition and behavior; Wu Siying, Ph.D. candidate, research interests include data user cognition and behavior; Ling Shang, Master's candidate, research interests include data user cognition and behavior; Li Qiao, Ph.D., lecturer, research interests include data user psychology and data behavior; Wang Ping (corresponding author), Ph.D., professor, research interests include human-intelligence interaction and data governance, Email: wangping@whu.edu.cn.
  • Supported by:
    This study was supported by the Youth Program of the National Social Science Foundation of China "Research on Open Data Discovery and Reuse Behavior of Scientific Research Users in the Context of Open Science" (22CTQ040)

摘要: 融合生成式人工智能技术和检索技术的生成式智能搜索引擎具备支持科研人员跨越数据意义建构挑战的潜力,但也伴生一定风险。基于意义建构理论、信息行为模型、信息搜索过程模型和信息搜索行为模型,初步提出“数据搜索即数据意义建构”理论模型(DS-DSM),并以Bing Copilot为平台开展用户实验,探究科研人员如何通过与生成式智能搜索引擎交互来建构数据的意义。研究发现,在生成式智能搜索引擎交互场景中,科研人员数据搜索实质上是数据意义建构,并进一步揭示了数据搜索即数据意义建构的阶段构成,以及在各个阶段中,为了完成以数据为中心的任务,科研人员如何在认知、情感和行为层面使用生成式智能搜索引擎作为桥梁,跨越数据意义建构中面临的鸿沟。在数据类任务情境中,科研人员的意义建构始于形成阶段,该阶段科研用户面临的鸿沟类型和利用的桥梁类型均最为丰富,也展现出最为复杂的行为、认知和情感反应,而在研究类任务情境中,部分科研人员则首先经历了无明确目标的初始、选择和探索阶段。基于研究发现,提出了优化生成式智能搜索引擎设计和开展用户素养教育的实践策略。

关键词: 数据搜索, 数据意义建构, 生成式智能搜索引擎, 智能化科研, 数据密集型科学

Abstract: Generative intelligent search engines, which integrate generative artificial intelligence technology and retrieval techniques, have the potential to support researchers in overcoming challenges during data sensemaking, but they also come with certain risks. Drawing upon sense-making theory, information behavior model, information search process model, and information search behavior model, this study preliminarily proposes the Data Search As Data sensemaking(DS-DSM) theoretical model. To explore this model, this study conducts a user experiment on the Bing Copilot platform to understand how researchers construct the meaning of data through interaction with generative intelligent search engines. The findings indicate that in the interaction scenario of generative intelligent search engines, the essence of researchers’ data search is data sensemaking. This study also identifies the stages of this process and reveals how, at each stage, researchers cognitively, affectively, and behaviorally engage with generative intelligent search engines as a bridge to overcome gaps in the data sensemaking process to complete data-centered tasks. In data-related task situations, researchers’ sensemaking begins at the formulation stage. In contrast, in research-related task situations, some researchers first go through initiation, selection, and exploration stages without clear goals. In the formulation stage, the types of gaps researchers face and the bridges they use are the most diverse, showing the most complex behavioral, cognitive, and affective responses. Based on these findings, this study proposes practical strategies for optimizing the design of generative intelligent search engines and conducting user literacy education.

Key words: Data search, Data sensemaking, Generative intelligent search engine, Artificial intelligence for research, Data-intensive science

中图分类号: