信息资源管理学报 ›› 2025, Vol. 15 ›› Issue (1): 69-85.doi: 10.13365/j.jirm.2025.01.069

• 研究论文 • 上一篇    下一篇

融合多维文本特征的政策回应性测度研究——以科技人才评价政策为例

林西1 董瑜2,3   

  1. 1.四川九洲电器集团有限责任公司,绵阳,621000; 
    2.中国科学院文献情报中心,北京,100190; 
    3.中国科学院大学经济与管理学院信息资源管理系,北京,100190
  • 出版日期:2025-01-26 发布日期:2025-02-19
  • 作者简介:林西,硕士生,研究方向为政策文本量化;董瑜(通讯作者),研究馆员,硕士生导师,研究方向为政策文本量化、科技政策、科技情报等,Email: dongy@mail.las.ac.cn。
  • 基金资助:
    本文系中国科学院文献情报能力建设专项“科技领域态势分析与服务”(2024)E4290425的研究成果之一。

Measuring Policy Responsiveness with Multi-dimensional Text Features:Evidence from Science and Technology Talent Evaluation Policies

Lin Xi1 Dong Yu2,3   

  1. 1.Sichuan Jiuzhou Electric Group Co., Ltd., Mianyang,621000; 
    2.National Science Library, Chinese Academy of Sciences, Beijing,100190; 
    3.Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing,100190
  • Online:2025-01-26 Published:2025-02-19
  • About author:Lin Xi, master candidate, with research interests in quantification of policy texts;Dong Yu, corresponding author, research librarian, master instructor,with research interests in quantification of policy texts, science and technology policy, science and technology information, etc.,Email: dongy@mail.las.ac.cn.
  • Supported by:
    This is an outcome of the capacity building project "Science and Technology Situation Analysis and Services(2024) E4290425" supported by National Science Library, Chinese Academy of Sciences.

摘要: 政策回应性是衡量国家治理能力和治理水平的重要指标。本研究以政治系统理论为分析框架,融合意见文本与政策文本的主题、时间、数量及层级特征,提取回应率、回应有效性、回应积极性和回应效力四个指标,构建政策回应性测度模型。同时,以我国科技人才评价政策为实证对象,计算2002—2022年该领域的政策回应性,分主题讨论政策回应的发展变化特征,并选择“怎么评”主题探究政策回应的具体内容。研究表明,政策回应性测度模型量化政策回应性效果较好,我国科技人才评价政策领域的政策回应性呈波动上升趋势,同时具有从选择性回应到全方位回应以及从滞后回应到高质量回应的发展趋势。本研究丰富了政策回应性测度方法,有效减少了主观因素的影响,增强了研究的理论深度和实践应用的广度。

关键词: 政策回应性, 文本特征, 文本挖掘, 科技人才评价, 政治系统论

Abstract: Policy responsiveness reflects national governance capabilities and governance levels. This study applies political system theory as an analytical framework, integrating the subject, time, quantity, and hierarchical characteristics of opinion texts and policy texts. It extracts four indicators-response rate, response effectiveness, response enthusiasm, and response efficacy-and develops a policy responsiveness measurement model. The analysis calculates the policy responsiveness in the field of scientific and technological talent evaluation in China from 2002 to 2022. By examining themes, it identifies the development and changing characteristics of policy responsiveness and uses the theme of "How to Evaluate" as a case study to explore the specific content of policy responses. The findings demonstrate that the policy responsiveness measurement model quantifies policy responsiveness effectively and reveal a shift in China's evaluation of S&T talents from selective responsiveness to comprehensive responsiveness, and from delayed responsiveness to high-quality responsiveness. This study enriches the methods for measuring policy responsiveness, reduces the influence of subjective factors, and enhances both the theoretical depth and practical application of the research.

Key words: Policy responsiveness, Text features, Text mining, Scientific and technological talent evaluation, Political system theory

中图分类号: