信息资源管理学报 ›› 2023, Vol. 13 ›› Issue (6): 144-155.doi: 10.13365/j.jirm.2023.06.144

• 研究论文 • 上一篇    下一篇

基于BP神经网络和MIV算法的高价值专利预测与影响因素分析

胡泽文 周西姬   

  1. 南京信息工程大学管理工程学院,南京,210044
  • 出版日期:2023-11-26 发布日期:2023-12-29
  • 作者简介:胡泽文(通讯作者),博士,副教授,博士生导师,研究方向为数据智能与情报分析,知识挖掘与知识服务,Email:huzewen915@163.com;周西姬,硕士,研究方向为数据智能与情报分析。
  • 基金资助:
    本文系国家社会科学基金项目“面向海量科技文献的潜在‘精品’识别方法与应用研究”(20CTQ031)研究成果之一。

Predicting Highly-value Patents and Analyzing its Determinants Based on BP Neural Network and MIV Algorithm

Hu Zewen Zhou Xiji   

  1. School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044
  • Online:2023-11-26 Published:2023-12-29

摘要: 通过设计专利价值的多维评估指标,筛选出已公认的高价值专利作为预测目标向量,构建训练集和测试集,运用BP神经网络模型进行潜在高价值专利的自动预测,同时借助MIV算法分析专利价值各维度指标对模型预测结果的贡献和影响程度。研究发现:(1)BP神经网络模型的预测性能较优,预测准确率全部达到89%以上,其中“专利家族规模”评估出高价值专利为预测目标向量的BP神经网络模型表现最优,而“专利家族规模”与“专利被引频次”组合指标评估出高价值专利为预测目标向量的识别模型表现相对较差。(2)MIV绝对值能够有效反映专利价值各维度指标对模型预测结果的影响和贡献程度,其中技术价值维度指标对高价值专利预测结果的影响最为显著。从单个指标的MIV绝对值和总占比来看,专利IPC4分类数、首次被引速度、权利要求数和专利被引频次对各模型高价值专利预测结果的影响程度较大。

关键词: 高价值专利, BP神经网络, MIV算法, 专利预测, 机器学习, 专利价值评估

Abstract: This paper designed multi-dimensional evaluation indicators of patent value and recognized high-value patents as the prediction target vector to construct the training set and the test set. Then the BP neural network model was used to predict and identify potential high-value patents. At the same time, the MIV algorithm was used to analyze the contribution and influence of various dimension indicators of patent value to the result of the high-value patents prediction. The experimental results show that: (1) The prediction performance of the BP neural network model is relatively good, and the prediction accuracy rate is all over 89%. The BP neural network model that takes the recognized high-value patents through "patent family size" as the predictive target vector has the best performance, while the BP neural network model with the predictive target vector composed of the recognized high-value patents through the combination indicator of "patent family size" and "patent citation frequency" performs relatively poorly. (2) The MIV absolute value can effectively reflect the influence and contribution degree of various patent value indicators on the result of the predication model. The indicator of technical value has the most significant influence on the result of the highly-value patent prediction based on the BP neural network model. From the perspective of the MIV absolute value and the total proportion of every single indicator, the four indicators including the number of patent IPC4 classification, the speed of first citation, the number of claims, and the frequency of patent citations have a more significant influence on the results of high-value patents prediction.

Key words: High-value patent, BP neural network, MIV algorithm, Patent prediction, Machine learning, Patent value evaluation

中图分类号: