信息资源管理学报 ›› 2011, Vol. 1 ›› Issue (2): 4-9.

• 研究论文 •    下一篇

基于信息熵的关联分类方法(GARC类方法)综述

陈国青 刘冠男   

  1. 清华大学经济管理学院
  • 收稿日期:2011-07-01 出版日期:2011-09-26 发布日期:2011-09-26
  • 作者简介:陈国青,男,教授,博士生导师;刘冠男,男,博士研究生。
  • 基金资助:
    本文系国家自然科学基金重大项目(70890080),教育部人文社会科学重点研究基地重大项目(07JJD630005)研究成果。

Chen Guoqing Liu Guannan   

  • Received:2011-07-01 Online:2011-09-26 Published:2011-09-26

摘要: 分类方法研究是商务智能领域关注的重要课题,也在信息检索、电子商务以及信息资源管理中有广泛应用。近年来,将关联规则挖掘方法扩展到分类领域的工作受到重视,形成的关联分类方法显现出若干良好特征。本文围绕一类新颖的关联分类方法(即基于信息熵的GARC类方法)进行综述,通过阐述其基本思想、主要性质和方法脉络,反映此类方法不仅保持了传统关联分类方法在可理解性、精度和效率等方面的特点,而且使得生成的分类器(GARC/GARCII/GEAR)具有良好的简约性,同时有效消除了可能的规则冗余和冲突。此外,针对数值属性分区离散化中的“锋利边界”问题进行了相应的模糊扩展(GARCf)。

关键词: 信息熵, 关联分类, 综述

Abstract: The research of classification methods is the focus in the field of business intelligence,also is widely used in information retrieval,ecommerce and information resource management.In recent years,the association rule mining method expands to classification areas,and shows some good features.This paper focuses on a novel correlation classification method (that is,GARC class method based on the information entropy), summarizes the basic idea,the main properties and methods.This method not only keeps the tranditional association classification method in the comprehensible,efficiency and precision,and reflects other aspects,and effectively eliminates the possibility of redundant rules and conflict.In addition,it carries on the corresponding fuzzy extensions (GARCf) according to the “sharp boundary” problem of numerical attribute discrete division.

Key words: Information entropy, Class associative rule, Review

中图分类号: