信息资源管理学报 ›› 2018, Vol. 8 ›› Issue (2): 97-103.doi: 10.13365/j.jirm.2018.02.097

• 研究论文 • 上一篇    下一篇

融合个体兴趣与群体认知的音乐个性化推荐模型

胡昌平 查梦娟 石宇   

  • 收稿日期:2017-09-14 出版日期:2018-04-26 发布日期:2018-04-26
  • 作者简介:胡昌平,男,教授,博士生导师,研究方向为信息服务与用户;查梦娟(通讯作者),女,硕士生,研究方向为数字化信息服务,Email:1104134017@qq.com;石宇,女,硕士生,研究方向为数字化信息服务。

A Personalized Music Recommendation Model of Integrating Individual Interest and Group Cognition

Hu Changping Zha Mengjuan Shi Yu   

  • Received:2017-09-14 Online:2018-04-26 Published:2018-04-26

摘要:

本文旨在改善音乐资源描述的质量,提升音乐个性化推荐效率,为音乐推荐系统优化提供理论指导。基于用户对音乐作品的认知框架构建元数据体系,并以用户的共识为基础进行音乐作品描述,在此基础上构建融合群体认知与个人偏好的用户兴趣模型。以豆瓣音乐为例,进行个性化推荐实验并验证模型效果。实验表明,融合个体兴趣与群体认知进行音乐个性化推荐能明显改善音乐作品的推荐准确率。

关键词: 音乐推荐, 资源标注, 群体认知, 用户认知

Abstract:

The object of this study is to improve the quality of the description of music resources, improve the efficiency of personalized music recommendations, and provide theoretical guidances for the optimization of the music recommendation system. Based on user's cognitive framework of music works, we built metadata system, and describe music works based on user's consensus. On this basis, we built user interest model that integrates group cognition and personal preferences. Taking the music of the Douban as an example, the personalized recommendation experiment was carried out to verify the effect of the model. Experimental results showed that the fusion of individual interest and group cognitive music personalized recommendation can significantly improve music recommendation accuracy.

Key words: Music recommendation, Resource annotation, Group cognition, User cognition

中图分类号: