信息资源管理学报 ›› 2024, Vol. 14 ›› Issue (6): 45-59.doi: 10.13365/j.jirm.2024.06.045

• 学术专栏-学术评价 • 上一篇    下一篇

因果推断视角下团队多样性对人工智能领域文献创新扩散的影响研究

唐旭丽1 李信2   

  1. 1.华中师范大学信息管理学院,武汉,430079; 
    2.华中科技大学同济医学院医药卫生管理学院,武汉,430030
  • 出版日期:2024-11-26 发布日期:2024-12-19
  • 作者简介:唐旭丽,博士,讲师,研究方向为科学学与科学创新;李信(通讯作者),博士,讲师,研究方向为科技创新管理,Email:xl60@hust.edu.cn。
  • 基金资助:
    本文系国家自然科学基金青年项目“基于深度语义理解的生物医学论文临床转化分析研究”(72204090)和中央高校基本科研业务费(2024WKYXQN004)资助的研究成果之一。

A Study on the Impact of Team Diversity on the Innovation Diffusion of Papers in the Field of Artificial Intelligence from Causal Inference Perspective

Tang Xuli1 Li Xin2   

  1. 1.School of Information Management, Central China Normal University, Wuhan, 430079; 
    2.School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030
  • Online:2024-11-26 Published:2024-12-19
  • About author:Tang Xuli, PhD, lecturer, research area: science of science and scientific innovations. Li Xin(corresponding author), PhD, lecturer, research area: management of scientific and technological innovation, Email: xl60@hust.edu.cn.
  • Supported by:
    This work was supported by National Natural Science Foundation of China"Analysis of clinical translation of biomedical papers based on deep semantic understanding"(72204090) and the Fundamental Research Funds for the Central Universities (2024WKYXQN004).

摘要: 从引文视角出发,将人工智能(AI)领域文献创新扩散过程划分为“是否采纳”(10年内)和“持续性采纳”(包括快速增长期、缓慢增长期和采纳饱和期),基于1950—2019年期间发表的约170万篇AI合作文献,借助因果推断方法,探究团队多样性对不同创新扩散阶段的因果效应,研究发现:①团队国家多样性与是否采纳、持续性采纳均呈现正向因果效应,即提高AI领域团队国家多样性水平,能够使文献10年内被采纳的可能性相对增加7.041%~9.818%,同时使持续性采纳相对提高8.082%~16.834%。②团队在学科和主题层面的多样性与是否采纳间呈现正向因果关系,与持续性采纳间无显著因果关系。提高AI领域团队学科和主题多样性,能够使文献10年内被采纳的可能性分别提高3.651%~4.697%、3.052%~5.095%。③团队机构多样性和持续性采纳间存在正向因果效应,与是否采纳间无显著因果关联。提高AI领域团队机构多样性能够使持续性采纳相对提高13.506%~18.679%。

关键词: 团队多样性, 人工智能, 因果关联, 创新扩散, 持续性采纳

Abstract: We divided innovation diffusion in AI into two situations: whether adopted(in ten years) and continuous adoption(rapid growth period, slow growth period, and adoption saturation period) from the perspective of citation. Then, we explored the causal effects of team diversity on innovation diffusion at different stages by analyzing approximately 1.7 million AI co-authored papers using causal inference methods. We discovered that: ①the national diversity of co-author teams has positive causal effect on both whether adopted and adoption and continuous adoption. It would increase the likelihood of adoption by 7.041% to 9.818% over ten years and increase the continuous adoption by 8.082% to 16.834%. ②the team diversity across disciplines and topics has a positive causal effect on adoption and it would increase the likelihood of adoption by 3.651% to 4.697%, and by 3.052% to 5.095% over ten years, respectively. ③ the team diversity across affiliation has positive causal effect on continuous adoption and it would increase the continuous adoption by 13.506% to 18.679%.

Key words: Team diversity;Artificial intelligence;Causal inference;Knowledge diffusion, Continuous adoption

中图分类号: