信息资源管理学报 ›› 2024, Vol. 14 ›› Issue (1): 84-97.doi: 10.13365/j.jirm.2024.01.084

• 研究论文 • 上一篇    下一篇

从浏览到回答: 注意力分配视角下问答社区流量转化的组态研究

仇姝懿 马玲   

  1. 华东理工大学商学院,上海,200237
  • 出版日期:2024-01-26 发布日期:2024-02-27
  • 作者简介:仇姝懿,硕士生,研究方向为在线用户行为、知识社区;马玲(通讯作者),博士,教授,硕士生导师,研究方向为在线用户行为、知识共创,Email:maling@ecust.edu.cn。

From Browsing to Answering: A Configurational Analysis of Traffic Conversion in Q&A Community from the Perspective of Attention Distribution

Qiu Shuyi Ma Ling   

  1. School of Business, East China University of Science and Technology, Shanghai, 200237
  • Online:2024-01-26 Published:2024-02-27

摘要: 促进从问题浏览到作答的流量转化对问答社区至关重要。本研究将流量转化视为由问答界面信息线索协同作用的多要素并发过程,以知乎的2085条问题为样本,应用模糊集定性比较分析,从注意力分配视角对问答社区的流量转化进行组态研究,并辅以回归分析。研究发现,高流量转化率问题的组态路径包括低作答竞争-高社会关注刺激与低作答竞争-强社会影响刺激的高可读性问题,与非高流量转化率问题的组态路径并非完全因果对称;知识结构化程度不同的问题实现流量转化的组态存在差异。研究解释问答社区用户从浏览向作答转化过程中的注意力分配,揭示从浏览到回答的流量转化机制,有助于促进知识分享平台流量转化,优化问答界面设计。

关键词: 问答社区, 流量转化, 注意力分配, 内源性注意, 外源性注意, 模糊集定性比较分析(fsQCA)

Abstract: Traffic conversion from question browsing to answering is of great significance to Q&A community. It is regarded as a multi-factor concurrent process of the synergy of information clues within the Q&A interface. Employing fuzzy-set qualitative comparative analysis, this study examines 2,085 questions from Zhihu to explore how traffic conversion in the Q&A community can be facilitated, with supplementary insights from regression analysis. The findings reveal that the configuration path of high traffic conversion rate includes readable question type of "low competition-high social concern" and "low competition-strong social influence". Conversely, the configuration path for non-high traffic conversion rates is causal asymmetry. Furthermore, the configuration paths of high traffic conversion are different for questions with different degrees of knowledge structure. These findings elucidate the user attention distribution in Q&A communities during the transition from browsers to answerers and reveal the mechanisms of traffic conversion, which helps to facilitate traffic conversion of knowledge sharing platform and optimize the Q&A interface design.

Key words: Q&A community, Traffic conversion, Attention distribution, Endogenous attention, Exogenous attention, Fuzzy-set qualitative comparative analysis(fsQCA)

中图分类号: