信息资源管理学报 ›› 2020, Vol. 10 ›› Issue (2): 37-47.doi: 10.13365/j.jirm.2020.02.037

• 研究论文 • 上一篇    下一篇

认知偏差与突破路径:炒作高峰期后的大数据与社会研究

刘存地   

  1. 武汉大学社会学院,武汉,430072
  • 出版日期:2020-03-26 发布日期:2020-03-26
  • 作者简介:刘存地,男,博士研究生,研究方向为计算社会科学,传媒社会学。
  • 基金资助:
    本文系国家社会科学基金重大项目“大数据时代计算社会科学的产生、现状与发展前景研究”(16ZDA086)阶段性成果之一。

Cognitive Bias and Breakthrough Path:Big Data and Social Research After the Hype Peak

Liu Cundi   

  1. School of Sociology, Wuhan University, Wuhan, 430072
  • Online:2020-03-26 Published:2020-03-26

摘要: 新一轮信息技术革命为社会研究带来了新的数据资源和数据分析处理工具,基于网络大数据的社会研究由此成为计算社会科学的核心内容。但几年来,相关研究成果的质量与价值尚不尽人意,其发展正面临很大的困难。本文对产生这一现象的原因进行分析发现,新兴技术炒作所造成的复杂信息环境,导致不少社科学者对大数据时代的数据获取能力、数据代表性、数据质量、数据处理能力等产生认知偏差;要矫正这些偏差,并突破当前的发展瓶颈,可行的路径是对各种网络大数据进行有针对性的研究,准确而透彻地认识其特征;在研究中注重整合网络大数据与传统数据两种资源,使之互补长短;运用新兴信息处理技术,探索创新适合大数据的分析方法,致力于在研究方法和具体技术层面发展出一套完善的规范。

关键词: 大数据, 炒作周期, 社会研究, 计算社会科学, 数据质量, 数据代表性

Abstract: A new round of information technology revolution has brought new data resources and data analysis and processing tools to social research. And social research has thus become the core content of computational social science based on network big data. However, the quality and value of relevant research results are not satisfactory, and the development is facing great difficulties in recent years. In this article, the causes of this phenomenon were analyzed. As founded, the hype of emerging technologies creates a complex information environment, which led to the cognitive biases on the data acquisition capability, data representation, data quality, data processing capability of social science scholars in the era of big data. In order to correct these deviations and break through the current development bottleneck, the feasible path that targeting research on various network big data and understanding its characteristics accurately and thoroughly were necessary. In this research, the integration of network big data and traditional data resources was focused to make them complement each other. New information processing technology was applied to explore and innovate suitable analysis methods for big data, which is committed to developing a complete set of specifications in terms of research methods and specific technologies.

Key words: Big data, Hype cycle, Social research, Computational social science, Data quality, Data representativeness

中图分类号: