信息资源管理学报 ›› 2020, Vol. 10 ›› Issue (1): 39-.doi: 10.13365/j.jirm.2020.01.039

• 专题-突发事件应急情报分析 • 上一篇    下一篇

基于深度学习的多模态融合网民情感识别研究

范涛1 吴鹏1 曹琪2   

  1. 1.南京理工大学经济管理学院,南京,2100002.中国科学院科技战略咨询研究院,北京,100190
  • 收稿日期:2019-10-08 出版日期:2020-01-26 发布日期:2020-01-26
  • 通讯作者: 吴鹏,男,博士,教授,博士生导师,研究方向为用户行为与人机交互、智能信息处理 E-mail:wupeng@njust.edu.cn
  • 作者简介:范涛,男,硕士研究生,研究方向为多模态融合情感识别;吴鹏,男,博士,教授,博士生导师,研究方向为用户行为与人机交互、智能信息处理,Email: wupeng@njust.edu.cn;曹琪,女,工程师,研究方向为管理信息系统。
  • 基金资助:
    本文系国家自然科学基金“突发事件网民负面情感的模型检测研究”(71774084)、“基于时间感知模型的学术主题检索与演化挖掘研究”(71503124)、国家社会科学基金“基于社会网络分析的网络舆情主题发现研究”(15BTQ063)的成果之一。

The Research of Sentiment Recognition of Online Users Based on DNNs Multimodal Fusion

Fan Tao1 Wu Peng1 Cao Qi2   

  1. 1. School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210000; 

    2.Institute of Science and Development, Chinese Academy of Sciences, Beijing 100190

  • Received:2019-10-08 Online:2020-01-26 Published:2020-01-26

摘要: 现有网民情感识别研究多基于文本这一单模态,缺乏结合网民所发的文本及附带的图片来识别网民情感的研究。本文基于深度学习设计多模态融合网民情感识别模型,利用词向量模型对文本进行表示,并构建BiLSTMs模型提取文本情感特征,构建基于迁移学习的微调CNNs提取图片情感特征;将提取的文本和图片情感特征进行特征层融合后,输入至SVM中,实现多模态融合网民情感识别,同时将构建的多模态融合网民情感识别模型(DNNs-SVM)与设计的基线模型做实验效果对比,基线模型分别是word2vec+BiLSTMsBERT+BiLSTMsCNNs、微调CNNsDNNs。实验结果表明,融合文本和图片特征的多模态融合情感识别结果优于单模态情感识别结果,多模态融合DNNs-SVM模型均优于所设计的基线模型。

关键词: 网民情感, 多模态融合, 情感识别, 双向长短期记忆模型, 微调卷积神经网络, 网络舆情, 舆情监测

Abstract: The research of sentiment recognition of online users mostly are based texts, lacking the research which consider the texts and attached images to recognize the sentiment. The paper proposed a DNNs-SVM multimodal fusion model. In the extraction of textual features, we used word2vec model to represent texts. And a BiLSTMs model was built to extract the features of texts. In the extraction of visual features, we built a fine-tuned CNNs, using VGG16 as base model, to extract the features of images. We concatenated textual features and visual features in feature-level. Then the fused features were fed into SVM classifier to complete multimodal sentiment recognition. Additionally, the proposed model was compared to designed baseline models. The baseline models were word2vec+BiLSTMs, BERT+BiLSTMs, CNNs, fine-tuned CNNs and DNNs. The results showed that the results of fused features outperformed that of unimodal features and the proposed model outperformed all baseline models.

Key words: Sentiment of online users; Multimodal fusion, Sentiment recognition, BiLSTMs, Fine-tuned CNNs, Online public opinion, Public opinion monitoring

中图分类号: