信息资源管理学报 ›› 2024, Vol. 14 ›› Issue (4): 133-145.doi: 10.13365/j.jirm.2024.04.133

• 研究论文 • 上一篇    下一篇

知识关联视角下标准文档的多粒度知识组织方法研究

范昊 王一帆   

  1. 武汉大学信息管理学院,武汉,430072
  • 出版日期:2024-07-26 发布日期:2024-08-14
  • 作者简介:范昊,教授,博士,博士生导师,研究方向为信息内容分析与知识挖掘;王一帆(通讯作者),博士研究生,Email:yifwang@whu.edu.cn,研究方向为知识组织与知识服务。
  • 基金资助:
    本文系教育部人文社会科学重点研究基地重大项目“国家科技安全风险监测与评估研究”(22JD870003)的研究成果之一。

Research on Multi-granularity Knowledge Organization Method for Standard Documents from the Perspective of Knowledge Association

Fan Hao Wang Yifan   

  1. School of Information Management, Wuhan University, Wuhan, 430072
  • Online:2024-07-26 Published:2024-08-14
  • About author:Fan Hao, professor, Ph.D., doctoral supervisor, research interests include information content analysis and knowledge mining; Wang Yifan(corresponding author), Ph.D. candidate, research interests include knowledge management and service, Email:yifwang@whu.edu.cn.
  • Supported by:
    The article is one of the research outcome of the MOE Project of Key Research Institute of Humanities and Social Sciences at Universities "Research on National Science and Technology Security Risk Monitoring and Assessment"(22JD870003).

摘要: 传统的文档组织方式无法应对标准数字化发展形势,有必要充分发掘标准文档中的多粒度知识单元及其语义关联,探索能够高效运用标准知识的新型组织方法,为优化标准供给提供参考。从知识关联视角出发,提出一种面向标准文档的多粒度、富语义的通用知识组织方法。首先,基于知识粒度理论,依据标准文档的知识内容和需求特征进行多粒度的知识划分与描述;其次,从知识层级、文档特征、文本逻辑、时空演化等方面认知和发现标准多粒度知识间的语义关联模式与类型;最后,采用本体构建方法实现标准文档的多粒度知识组织,并通过知识实例的添加来实现本体验证与价值阐述。多粒度知识关联的标准组织方法能够完整揭示标准文档中的多粒度知识单元,形成联通广泛的知识层次与关联,有助于标准知识在多种服务场景中被有效获取、共享与重用,既推进了适应数智时代的标准资源建设,又丰富了多粒度知识驱动的文档内容挖掘与利用。

关键词: 标准文档, 知识组织, 语义关联, 多粒度知识, 本体构建

Abstract: Traditional document organization methods are inadequate to address the evolving trends of standard digitization. It is essential to uncover the multi-granularity knowledge units and their semantic associations within standard documents, to explore novel organizational methods that can efficiently utilize standard knowledge, and to provide references for optimizing standard provision. From the perspective of knowledge association, this study proposed a multi-granularity, semantically-rich, and universal knowledge organization method for standard documents. Firstly, based on the Knowledge Granularity Theory, knowledge partitioning and description at multiple granularities are carried out according to the knowledge content and requirement characteristics of standard documents. Secondly, the semantic association patterns and types among multi-granularity knowledge units are recognized and discovered from aspects such as knowledge hierarchy, document features, text logic, and spatiotemporal evolution. Finally, the method of ontology construction is employed to achieve multi-granularity knowledge organization of standard documents, and the ontology is validated and its value elaborated through the addition of knowledge instances. The multi-granularity knowledge association method for standard organization can comprehensively reveal the multi-granularity knowledge units within standard documents, forming extensive interconnected knowledge levels and associations. This approach facilitates the effective acquisition, sharing, and reuse of standard knowledge across various service scenarios. It not only advances the construction of standard resources to suit the era of digital intelligence but also enriches the mining and utilization of document content driven by multi-granularity knowledge.

Key words: Standard documents, Knowledge organization, Semantic association, Multi granularity knowledge, Ontology construction

中图分类号: