信息资源管理学报 ›› 2024, Vol. 14 ›› Issue (2): 136-147.doi: 10.13365/j.jirm.2024.02.136

• 研究论文 • 上一篇    下一篇

实验规程数据化研究与建设趋势分析

付芸1,2 朱丽雅1 韩涛1,2 郑新曼1,2 刘细文1,2   

  1. 1.中国科学院文献情报中心,北京,100190; 
    2.中国科学院大学 经济与管理学院信息资源管理系,北京,100049
  • 出版日期:2024-03-26 发布日期:2024-04-11
  • 作者简介:付芸,博士生,馆员,研究方向为智能科研、情报学理论与方法;朱丽雅,硕士,助理研究员,研究方向为自然语言处理、智能科研;韩涛,博士,研究员,硕导,研究方向为智能科研、情报学理论与方法;郑新曼,博士生,研究方向为情报学理论与方法;刘细文(通讯作者),博士,研究员,博导,研究方向为智能科研、情报学理论与方法,Email: liuxw@mail.las.ac.cn。
  • 基金资助:
    本文系国家自然科学基金重点项目“数智赋能的科技信息资源与知识管理理论变革”(72234005)和国家社会科学基金项目“支撑AI4Science的科技图书馆知识服务内容研究”(22BTQ019)的研究成果之一。

Research and Construction Trends Analysis of Experimental Protocol Datafication

Fu Yun1,2 Zhu Liya1 Han Tao1,2 Zheng Xinman1,2 Liu Xiwen1,2   

  1. 1.National Science Library, Chinese Academy of Sciences, Beijing, 100190; 
    2. Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing, 100049
  • Online:2024-03-26 Published:2024-04-11
  • About author:Fu Yun, Ph.D. candidate, librarian, research interests include AI4Science, theory and methods of information science; Zhu Liya, M.S., assistant researcher, research interests include NLP, AI4Science; Han Tao, Ph.D. researcher, Master's supervisor, research interests include AI4Science, theory and methods of information science; Zheng Xinman, Ph.D. candidate, research interests include theory and methods of information science; Liu Xiwen (consponding author) Ph.D. researcher, Doctor's supervisor, research interests include AI4Science, theory and methods of information science.
  • Supported by:
    The work is supported by key program from National Natural Science Foundation of China“Data and Intelligence Empowered Theoretic Change of Scientific Information Resource and Knowledge Management Theory”(Grant No. 72234005), and general program from National Social Science Fund of China "The Study of Technological Library Knowledge Service Content Supporting AI4Science" (Grant No.22BTQ019).

摘要: 围绕实验规程数据化研究与建设趋势,充分结合当前科研活动对实验规程的需求特征,重新定义实验规程并明确界定试验规程数据化。在此基础上,综合分析当前103篇实验规程数据化研究文献的国家分布、关键研究问题及对应核心机构人员,总结实验规程数据化研究趋势。选取具有综合集成且承上启下特征的数据库(包含语料库)建设这一关键研究问题做详细归纳分析,按照科技文献库、可计算数据库、文本标注语料库三种形式分类梳理,总结建设趋势。在趋势分析基础上,进一步聚焦信息资源专业和知识服务机构在实验规程数据化研究四个关键问题上可发挥的理论和方法优势,共同推动理实交融、数据驱动知识发现的发展。

关键词: 实验规程, 数据化, 数据驱动知识发现, 智能实验平台, 理实交融

Abstract: This study explores the trends in research and construction of experimental protocol datafication, aligning with the current needs of experimental protocols in scientific research. It redefines experimental protocols and clearly provides a clear conceptualization of their datafication. On this basis, the study conducts a comprehensive analysis of the national distribution, key research questions, and the leading institutions and researchers involved in 103 pieces of literature related to the experimental protocol datafication. The key research problem, focusing on the development of datasets (including corpora) with comprehensive integration and the characteristics of linking the upper and lower levels was selected for detailed analysis and analyzed. This involves categorizing and organizing the information into three types: scientific and technological literature database, computable data set and text annotation corpus. Building on this trend analysis, this study discusses the theoretical and methodological advantages that information resource management and knowledge service institutions can bring to four key research issues in experimental protocol datafication. It emphasizes their role in promoting the integration of theory and experiment and data-driven knowledge discovery.

Key words: Experimental protocols, Datafication, Data-driven knowledge discovery, Intelligent experimental platform, Theory and experiment integration

中图分类号: