信息资源管理学报 ›› 2024, Vol. 14 ›› Issue (1): 68-83,97.doi: 10.13365/j.jirm.2024.01.068

• 研究论文 • 上一篇    下一篇

基于算法归因框架的专利维持时间影响因素探究

付振康1 柳炳祥2,3 鄢春根3 周子钰3 宫秀燕4   

  1. 1.南京大学信息管理学院,南京,210023; 
    2.景德镇陶瓷大学信息工程学院,景德镇,333403; 
    3.景德镇陶瓷大学知识产权信息中心,景德镇,333403; 
    4.黑龙江八一农垦大学经济管理学院,大庆,163316
  • 出版日期:2024-01-26 发布日期:2024-02-27
  • 作者简介:付振康,博士生,研究方向为网络信息资源管理、数据挖掘与科技情报;柳炳祥(通讯作者),博士,教授,研究方向为数据挖掘、群智能算法与竞争情报, Email:2176435812@qq.com;鄢春根,硕士,教授,研究方向为专利情报分析与知识产权管理;周子钰,硕士,讲师,研究方向为数据挖掘;宫秀燕,硕士,科研助理,研究方向为知识产权价值评估与财务困境预警。

Exploring the Factors Influencing Patent Maintenance Time Based on an Algorithmic Attribution Framework

Fu Zhenkang1 Liu Bingxiang2,3 Yan Chungen3 Zhou Ziyu3 Gong Xiuyan4   

  1. 1.School of Information Management, Nanjing University, Nanjing, 210023; 
    2. School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403; 
    3.Service Center of Intellectual Property, Jingdezhen Ceramic University, Jingdezhen, 333403; 
    4. School of Economics and Management, Heilongjiang Bayi Agricultural University, Daqing, 163316
  • Online:2024-01-26 Published:2024-02-27

摘要: 基于生物学视角构建算法归因框架,探究不同因素对专利维持时间的影响效应及其在不同文献生命周期阶段和不同技术领域的变化态势。以中国2001—2017年授权的专利作为样本,采用融合生存分析的可解释机器学习方法构建了算法归因的实证研究框架,根据生物学视角探究了先天因素、行为因素和环境因素对专利维持行为的影响效应。研究表明,基于算法归因框架可以准确有效地揭示不同因素与专利维持时间之间的效应关系,在三类因素当中,先天因素和行为因素占据主要地位,环境因素对专利维持的影响较弱,在不同文献生命周期阶段和不同技术领域,不同因素对专利维持时间的影响效应也有所不同。研究结论可以为专利维持时间预测和专利价值评估提供有价值的指标和较为创新的方法。

关键词: 专利维持时间, 算法归因, 生存分析, 可解释机器学习, 专利价值

Abstract: This study develops an algorithmic attribution framework, inspired by biological theory, to explore the effects of various factors on patent maintenance time. It delves into the changing dynamics of these effects across different literature life cycle stages and different technology fields. Employing a combination of survival analysis and interpretable machine learning techniques, this study analyzes a dataset of patents granted in China between 2001 and 2017. Specifically, this study investigates the effects of innate, behavioral and environmental factors on patent maintenance time. The findings shows that the algorithmic attribution framework is effective in accurately determining the relationship between diverse factors and patent maintenance time. Additionally, the study notes that the effects of these factors varies significantly across different literature life cycle stages and among diverse technological domains. The findings can provide critical insights and innovative approaches for patent maintenance time prediction and patent value assessment.

Key words: Patent maintenance time, Algorithmic attribution, Survival analysis, Interpretable machine learning, Patent value

中图分类号: