信息资源管理学报 ›› 2016, Vol. 6 ›› Issue (2): 22-28.doi: 10.13365/j.jirm.2016.02.022

• 专题论文 • 上一篇    下一篇

耗散结构理论视域下重大医疗事故网络舆情有序化控制研究

张敏 刘晓彤 夏宇   

  • 收稿日期:2015-10-22 出版日期:2016-04-26 发布日期:2016-04-26
  • 作者简介:张敏,女,副教授,博士,研究方向:信息资源管理,Email:zhangmin@whu.edu.cn;刘晓彤,女,硕士研究生,研究方向:社交网络与文本挖掘;夏宇,女,硕士研究生,研究方向:网络舆情。
  • 基金资助:
    本文系国家自然科学基金项目“Web2.0环境下基于社会化网络瓶颈限制的信息扩散最大化研究”(71203166),武汉大学自主科研项目(人文社会科学)“危机伤害情境下网络声誉演化与修复机制研究”(受“中央高校基本科研业务费专项资金”资助)以及武汉大学人文社会科学“70后”学者学术发展计划专题项目“数字人文和语义挖掘”的研究成果之一。

Ordering Control Research on Online Public Opinion in Major Medical Accidents: From the Aspect of Dissipative Structure Theory

Zhang Min Liu Xiaotong Xia Yu   

  • Received:2015-10-22 Online:2016-04-26 Published:2016-04-26

摘要: 重大医疗事故网络舆情具有参与群体众多、观点难以稳定和社会热度高等特点,对网络舆情进行有序化控制在重大医疗事故公共危机管理中具有重要意义。本文从耗散结构理论的研究视角出发,以湘潭孕妇死亡事件为实证研究对象,采用文本挖掘和社会化网络分析方法对舆情的演化过程展开分析。研究结果显示,保持舆情系统开放性、营造舆论场非平衡态、充分利用舆情要素间的非线性制约作用,因势利导舆情的涨落以及建立完善的舆情预警机制等控制策略对于有序化控制具有积极作用。

关键词: 重大医疗事故,  网络舆情,  有序化控制,  耗散结构理论,  文本挖掘,  社会化网络分析

Abstract: Online public opinion on major medical accident has many significant characteristics, such as a tremendous participation group, opinions that can hardly settle down in a short time and highly social heat. Ordering control research of online public opinion is meaningful during the process of major medical accidents public crisis management. This paper chooses the case of Xiangtan maternal to do the empirical research from the perspective of dissipative structure theory. After analysis of evolution of public opinion using text mining and social network method, five measures are proposed, involving maintaining the openness of the system, ensuring the original state of the system to be non-equilibrium, making full use of the nonlinear restrictive relation between elements, guiding the direction of public opinion in the light of the general trend, and establishing the perfect online public opinion early warning mechanism.

Key words: Major medical accidents,  Online public opinion,  Ordering control,  Dissipative structure theory,  Text mining,  Social network analysis

中图分类号: